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Abstract. This paper presents an improved definition of a coordinate
frame, entitled the principal frame (PF ), that is useful for metric calcu-
lations on spatial rigid-body displacements. For a finite set of displace-
ments a point mass model of the moving rigid-body is employed. Next,
we compute the centroid and principal axes associated with the point
mass locations. The PF is then determined from the principal axes.
Here, a new algorithm for determining the PF from the principal axes
is proposed. The PF is invariant with respect to the choice of the fixed
coordinate frame as well as the system of units used; therefore, the PF
is useful for left invariant metric computations. An example including a
set of 10 spatial rigid-body displacements is presented to demonstrate
the application and utility of the PF .
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1 Introduction

This paper presents a new procedure, which directly builds upon prior work
reported in [1, 2], for identifying a useful fixed frame to perform metric compu-
tations on finite sets of spatial displacements. A metric is used to measure the
distance between two points in a set. There are various metrics for finding the
distance between two points in Euclidean space. However, finding the distance
between two locations of a rigid-body, i.e. two elements of SE(3), is still the
subject of ongoing research, see [1, 3–20]. Kazerounian and Rastegar [17] define
metrics that depend upon the shape and mass density of the finite moving body.
More recently, Angeles has investigated the use of characteristic lengths that are
used to combine translations and rotations in some manner for use in distance
metrics [19]. Finally, Di Gregorio [21] has sought to employ a geometric approach
to identify useful distance metrics.

All metrics on the group SE(3) of spatial displacements yield a distance that
is dependent upon the chosen fixed or moving frames of reference and the units
used [9, 11]. Nevertheless, a metric independent of these choices, referred to as
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bi-invariant, is desirable. Metrics independent of the choice of coordinate frames
and the units used do exist on SO(N), Larochelle [12]. One bi-invariant metric
defined by Ravani and Roth [22] defines the distance between two orientations of
a rigid-body as the magnitude of the difference between the associated quater-
nions. Of related background interest are the works by Horn [23] and Shoemake
and Duff [24]. Horn solved the problem of finding the rigid-body transforma-
tion between two coordinate frames using point coordinates using Hamilton’s
quaternions whereas Shoemake and Duff examined the problem of decomposing
homogeneous rigid-body displacements into rotations and translations using the
polar decomposition.

The PF has been introduced to support the use of polar decomposition
based metrics on the spatial displacement group [1, 2, 26, 25]. These techniques
are based on the polar decomposition (PD) of the homogenous transform repre-
sentation of the elements of SE(3) and the principal frame PF associated with
the finite set of rigid-body displacements. The mapping of the elements of the
special Euclidean group SE(3) to SO(4) yields hyper-dimensional rotations that
approximate the rigid-body displacements. Conceptual representations of the
mapping of SE(3) to SO(4) are shown in Figures 1 and 2; note the axis coloring
convention that is used throughout the paper: red = x axis, green = y axis, and
blue = z axis. Once the elements are mapped to SO(4) distances can then be
evaluated by using a bi-invariant metric on SO(4). The use of the PF yields a
metric on SE(3) that is left invariant, i.e. independent of the choice of the fixed
reference frame.

2 The Polar Decomposition and a Metric on SO(4)

Here we briefly review the use of the polar decomposition on elements of SE(3)
to yield hyper-dimensional rotations, i.e. element sof SO(4), which approximate
spatial displacements of a rigid-body. The elements of SO(4) are derived from
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homogenous transformations representing spatial SE(3) displacements by polar
decompositions as shown in Figure 2 and derived in [1, 2, 27]. A number of it-
erative algorithms exist for the evaluation of the polar decomposition. Higham
described a method based upon Newtons Method, see [33]. A simple and efficient
iterative algorithm for computing the polar decomposition is shown by Dubrulle
[34]. The algorithm produces monotonic convergence in the Frobenius norm in
∼ 10 or fewer steps. A MatLab implementation of the algorithm is shown below.

%% Dubrulle ’ s Algorithm
%% Input T : Sca led t rans fo rmat ion matrix in SE(3)
%% Output P : Pro j e c t i on in SO(4)
func t i on P = po la rmet r i c (T)
%I n i t i a l i z a t i o n
P = T;
l im i t = (1+eps )∗ s q r t ( s i z e (T, 2 ) ) ;
T = inv (P ’ ) ;
g = sq r t (norm(T, ’ f ro ’ ) / norm (P, ’ f ro ’ ) ) ;
P = 0 . 5∗ ( g∗P+(1/g∗T) ) ;
f = norm(P, ’ f ro ’ ) ;
p f = i n f ;
% I t e r a t i o n
whi l e ( f>l im i t ) & ( f<pf )

pf = f ;
T = inv (P ’ ) ;
g= sq r t (norm(T, ’ f ro ’ ) / f ) ;
P = 0 . 5∗ ( g∗P+(1/g∗T) ) ;
f = norm(P, ’ f ro ’ ) ;
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end
return

The distance between any two elements [A1] and [A2] in SO(4) is determined
by using the Frobenius norm as follows,

d = ‖[I]− [A2][A1]
T ‖F (1)

See [28] for a proof that this is a valid metric on SO(N).

3 Conceptual Overview

The preceding section summarized the use of the polar decomposition to yield
elements of SO(4) that approximate elements of SE(3). An additional challenge
remains; the application of a metric on SO(N), i.e. on the approximating hyper-
rotations, will not be well-defined because of the dependence on the choice of
fixed reference frame. In order to mitigate this challenge and yield a useful metric
on a finite set of spatial displacements the principal frame PF is introduced. The
PF is unique for a finite set of displacements and invariant with respect to the
choice of fixed coordinate frame and the system of units, see [29, 30]. All of
the displacements are then expressed with respect to the principal frame and
all distances are measured with respect to this same frame. Hence, the polar
decomposition based metric yields results that are invariant with respect to
the choice of fixed frame. Next, we present the detailed implementation of this
methodology.

4 Determining the Principal Frame

Given a finite set of n spatial displacements we seek to determine their magni-
tudes. The displacements depend on the fixed and moving coordinate frames as
well as the system of units employed. In order to yield a left invariant metric we
utilize a PF that is derived from a unit point mass model for a moving body as
suggested by [27, 4]. A unit point mass is assigned to the origin of each of the
coordinate frames representing rigid-body displacements. The point masses are
then used to determine the system’s center of mass and, eventually the invariant
principal frame of the set of displacements. This is done to yield a metric that is
independent of the moving body’s geometry and mass distribution. The center
of mass and the PF are unique for the system and invariant with respect to
both the choice of the fixed coordinate frame and the system of units [29, 30].

The procedure for determining the center of mass −→c and the PF associated
with the n prescribed spatial locations is now described. A unit point mass is
located at the origin of each location.

−→c =
1

n

n∑
i=1

−→
di (2)
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where,
−→
di is the translation vector associated with the ith location, i.e. the origin

of the ith location with respect to the fixed frame.
The PF is defined such that its axes are aligned with the principal axes of

the n point mass system and its origin is at the centroid −→c . After finding the
centroid of the system we determine the principal axes of the point mass system
as follows. The inertia tensor is computed from,

[I] = [1]
n∑

i=1

‖di‖2 −
n∑

i=1

did
T
i (3)

where [1] is the 3× 3 identity matrix. The principal frame is then determined to
be

[PF ] =

[−→v1 −→v2 −→v3 −→c
0 0 0 1

]
(4)

where, −→vi are the principal axes, i.e. the eigenvectors, associated with the inertia
tensor [I], see Greenwood [29].

The directions of the vectors along the principal axes −→vi are chosen such that
the principal frame is a right-handed system. However, Equation (4) does not
uniquely define PF since the eigenvectors −→vi of the inertia tensor are not unique;
i.e. both −→vi and −−→vi are eigenvectors associated with [I]. In order to resolve this
ambiguity and yield a unique PF we chose the eigenvector directions that most
closely aligns the PF with respect to the fixed frame. The three eigenvectors
define 3 mutually orthogonal lines in space and are shown as black lines in
Figure 3. For each octant of Figure 3 there are three possible definitions of the
PF due to the 3 possible right-handed cyclic permutations of the x, y, and z
axes. Therefore there are 24 different right-handed PF orientations associated
with the three eigenvectors identified in Table 4. Note that each row of Table 4 is
associated with one octant and therefore represents three possible orientations of
the PF . For example, from Row 1, the three possible orientations of the PF are:
[−→v1 −→v2 −→v3 ], [−→v3 −→v1 −→v2 ], and, [−→v2 −→v3 −→v1 ]. The PF is selected as the frame

Table 1. The 8 Octants Associated with the Eigenvectors

Octant x axis y axis z axis

1 −→v1 −→v2 −→v3
2 −→v2 -−→v1 −→v3
3 -−→v1 -−→v2 −→v3
4 -−→v2 −→v1 −→v3
5 −→v2 −→v1 -−→v3
6 −→v1 -−→v2 -−→v3
7 -−→v2 -−→v1 -−→v3
8 -−→v1 −→v2 -−→v3
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that is most closely oriented, per Equation (1), to the fixed frame. However,
there are degenerate cases that must now be addressed.

In the degenerate spatial case in which the lines defining the PF form equal
angles with the axes of the fixed frame, there will be eight possible orientations
that are equidistant to the fixed frame’s orientation. In this case, the eigenvectors
form equal angles (i.e. 54.7 deg) with each axis of the fixed frame so we define the
x axis of the PF along the eigenvector in the first octant of the fixed reference
frame and the y and z axes are chosen such that the PF is the frame that is
most closely oriented, per Equation (1), to the fixed frame.

4.1 Normalizing the Translation Components

The unit disparity between translation and rotation is resolved by normalizing
the translational terms in the displacements. The displacements are normalized
by choosing a characteristic length R. The characteristic length used, based
upon the investigations reported in [12, 32], is 24L

π , where L is the maximum
translational component in the set of displacements at hand. This characteristic
length is the radius of the hypersphere that approximates the translational terms
by angular displacements that are ≤ 7.5 degrees. It was shown in [32] that
this characteristic length yields an effective balance between translational and
rotational displacement terms for projection metrics. The metric presented here
is therefore dependent on the choice of characteristic length. Note that larger
characteristic lengths result in an increase in the weight on the rotational terms
whereas smaller ones result in an increase in weight on the translational terms.

The elements of SE(3) are represented by,

Ti =

⎡
⎢⎢⎣

[R]
−→
t

0 0 0 1

⎤
⎥⎥⎦ (5)

324 P. Larochelle and V. Venkataramanujam

Fig. 3. The 8 Octants Associated with the Eigenvectors



where [R] represents the rotational component and
−→
t represents the transla-

tional component of the homogenous transformation representation of the ith

location. The scaled transformation matrices are given by,

Ti(scaled) =

⎡
⎢⎢⎣

[R]
−→
t /R

0 0 0 1

⎤
⎥⎥⎦ (6)

where R represents the characteristic length used to resolve the unit disparity be-
tween rotation and translation. The scaled transformation matrices may then be
mapped to SO(N) by using the Dubrulle algorithm for the polar decomposition.

4.2 Step by Step

For a set of n finite rigid-body spatial locations the steps to be followed are:

1. Determine the PF associated with the n locations.

2. Determine the relative displacements from the PF to each of the n locations.

3. Determine the characteristic length R associated with the n displacements
with respect to the PF and scale the translation terms in each by 1/R.

4. Compute the projections of PF and each of the scaled relative displacements
using the polar decomposition.

5. The magnitude of the displacement is defined as the distance from the PF to
the scaled relative displacement as computed via Equation (1). The distance
between any two of the n locations is similarly computed by the application
of Equation (1) to the projected scaled relative displacements.

5 Example

Consider the rigid-body guidance problem investigated by Larochelle [27]. The
10 spatial locations with respect to the fixed reference frame F are listed in
Table 2/ The principal frame is given by,

[PF ] =

⎡
⎢⎢⎣

0.756 0.000 0.655 5.500
0.000 1.000 0.000 0.000
0.655 0.000 -0.756 0.000
0.000 0.000 0.000 1.000

⎤
⎥⎥⎦ . (7)

The maximum translational component L is found to be 6.7256 and the asso-
ciated characteristic length is R = 24L

π = 51.3795. The distance from the first
location to the PF was found to be2.654. The distance between locations #1
and #2 was found to be 0.3485.
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Table 2. Ten Desired Locations.

# x y z Long (θ) Lat (φ) Roll (ψ)

1 1.00 0.00 5.00 100 0.00 0.00
2 2.00 0.00 4.00 90 0.00 10.00
3 3.00 0.00 3.00 80 0.00 20.00
4 4.00 0.00 2.00 70 0.00 30.00
5 5.00 0.00 1.00 60 0.00 40.00
6 6.00 0.00 −1.00 50 0.00 50.00
7 7.00 0.00 −2.00 40 0.00 60.00
8 8.00 0.00 −3.00 30 0.00 70.00
9 9.00 0.00 −4.00 20 0.00 80.00
10 10.00 0.00 −5.00 10 0.00 90.00

6 Summary

This work presented an improved definition of a coordinate frame, entitled the
principal frame (PF ), which is useful for metric calculations on spatial rigid-body
displacements. Though the PF was originally introduced in [1, 25, 26], presented
here is an improved definition that yields the PF that is most closely oriented
to the fixed reference frame. By using a point mass model for the moving rigid-
body the PF is determined from the associated centroid and principal axes. The
PF is left invariant, i.e. independent of both the choice of the fixed coordinate
frame and the system of units used, therefore the PF is useful in performing
left invariant distance metric computations on rigid-body spatial displacements.
One example that utilized the PF and the polar decomposition based metric of
Larochelle, Angeles, and Murray [2] was presented to demonstrate the utility of
the PF . The PF has potential applications in the design of robotic mechanical
systems; especially in motion synthesis and path generation.
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